Weg

1231

ADA 207122

CENTER

Technical Report

No. 13416

Repower and Regear of an M915 Line Haul Tractor
to Demonstrate Feasibility of Commercial Electronic
Controls and Air Starters
Contract DAAE07-85-C-R078
February 1989

B. E. Adams
Allison Transmission
Div. of General Motors Corp.
P.O. Box 894
Indianapolis, IN 46206-0894
and

Ted R. Zimmerman
U.S. Army Tank-Automotive Command
ATTN: AMSTA-RGT

By Warren, MI 48397-5000

Approved for Public Release: Distribution is Unlimited

20040106034

U.S. ARMY TANK-AUTOMOTIVE COMMAND RESEARCH, DEVELOPMENT & ENGINEERING CENTER Warren, Michigan 48397-5000

NOTICES

This report is not to be construed as an official Department of the Army position.
Mention of any trade names or manufacturers in this report shall not be construed as an official endorsement or approval of such products or
companies by the U.S. Government.
Destroy this report when it is no longer needed. Do not return it to the originator.

$\frac{\texttt{M915 ATEC/DDEC DEMONSTRATOR}}{\texttt{FINAL REPORT}}$

TABLE OF CONTENTS

		Page
ABSTRA	ACT	1
1.0 IN	TRODUCTION	2
2.0 OI	BJECTIVES	2
3.0 C	ONCLUSIONS	3
4.0 R	ECOMMENDATIONS	4
	ectronic Controls r Starters	4
5.0 DI	SCUSSION	4
	ckground agine and Transmission Description	4 4
5.2.1 E	ingine	4
5.2.1.2 5.2.1.3 5.2.1.4	General Intake and Exhaust Air-To-Air Cooling System Overhead Cam System Detroit Diesel Electronic Controls	4 4 5 5 6
5.2.2 T	ransmission	6
5.2.2.2 5.2.2.3 5.2.2.4 5.2.2.5 5.2.2.6	General Allison Transmission Electronic Controls Electronic Control Unit Throttle Position Sensor Electro-Hydraulic Valve Body Diagnostics Abuse Protection	6 6 7 7 8 8
5.2.3 C	controls	9
5.3 Bo	dy/Chassis Modifications	9
5.3.1 C	ooling System	9
5.3.1.2 5.3.1.3	Radiator Engine Air-To-Air Cooler Transmission/Steering Pump Air-To-Air Cooler Hoses	10 10 10 11

TABLE OF CONTENTS (cont)

		Page
5.3.2 Engine Mou	nts	11
5.3.3 Intake and E		11
5.3.4 Axles		11
5.3.5 Propeller Sh		12
5.3.6 Front End R		12
5.3.7 Engine Air S		12
5.3.8 Miscellaneo	us New and Reused Components	12
5.4 Electronic Co	ontrols Installation	12
5.4.1 Transmission	n	12
	Harness Installation	12
5.4.1.2 Vehicle In	terface Installation	13
5.4.1.2.1 ATEC E	lectrical Power Requirements	13
	3 Continuous Memory Power	13
	or 235 Shift Selector Power	13
	2A and 223A ATEC ECU Power	13
5.4.1.2.5 Neutral		14
5.4.1.2.6 Reverse		14
5.4.1.2.7 CHECK		14
5.4.1.2.8 Diagnost 5.4.1.2.9 System (14
J.4.1.2.5 System	Grounds	14
5.4.1.3 Electronic	e Control Unit (ECU)	14
5.4.1.4 Shift Selection		14
5.4.1.5 CHECK T	RANSMISSION Light	16
	osition Signal Interface Unit	16
5.4.1.7 Display Da	ata Line (DDL) Connector	16
5.4.1.8 Speed Sen	sor	16
5.4.2 Engine - DD	EC Installation	16
5.4.2.1 Electrical	Harness Installation	16
5.4.2.2 Power Hai		18
5.4.2.2.1 DDEC C	perating Voltages (Measured at ECM)	18
	0 and 241 Continuous Battery Power	18
5.4.2.2.3 Wire 150) System Ground	18
5.4.2.3 Vehicle H	arness Assembly	18
	nic Foot Pedal Assembly (EFPA)	19
	Level Sensor (CLS)	20
	tic Connector	21
5.4.2.3.4 Switched		21
	ENGINE Light	22
	NGINE Light	22
5.4.2.3.7 Diagnos	tic Mode	22

TABLE OF CONTENTS (cont)

	Page
5.4.2.4 Engine Harness Assembly	22
5.4.2.4.1 Oil Pressure Sensor (OPS)	22
5.4.2.4.2 Oil Temperature Sensor (OTS)	22
5.4.2.4.3 Fuel Temperature Sensor (FTS)	22
5.4.2.4.4 Turbo Boost Sensor (TBS)	22
5.4.2.4.5 Synchronization Reference Sensor (SRS)	22
5.4.2.4.6 Timing Reference Senso (TRS)	22
5.5 Performance Testing	24
5.5.1 General	24
5.5.2 Shakedown Test	24
5.5.3 Stabilized Speed on Grade	24
5.5.4 Acceleration Tests	24
5.5.5 Panic Brake Stops	25
5.5.6 Engine Air Starter Tests	25
5.6 Performance Comparison	25
5.6.1 Actual vs Predicted Performance	25
5.6.2 M915Al vs ATEC/DDEC Demonstrator Performance	27
5.7 Demonstrations and Evaluations	27
5.7.1 General	27
5.7.2 GMPG Demonstration	27
5.7.2.1 Electronic Controls Demonstration	29
5.7.2.2 Ride and Drive Demonstration	30
5.7.3 TACOM Demonstration	32
5.7.4 Troop Evaluation	32
5.7.5 High Altitude Burst Electro-Magnetic Pulse Test Evaluation	32
APPENDIX A	A-1
APPENDIX B	B-1

$\frac{\texttt{M915 ATEC/DDEC DEMONSTRATOR}}{\texttt{FINAL REPORT}}$

LIST OF ILLUSTRATIONS

		Page
1-1	Demonstration of Electronically-Controlled M915	3
5-1	Series 60 Engine Installation	5
5-2	ATEC System Components	7
5-3	Modified M915 Diagnostic Demonstration	8
5-4	Transmission Diagnostic Tool	9
5-5	Charge Air Duct From Intake To Cooler	10
5-6	Charge Air Duct From Cooler To Engine Intake	11
5-7	Shift Selector Installation	15
5-8	CHECK TRANSMISSION Light	17
5-9	Throttle Foot Pedal Assembly	19
5-10	DDEC/ATEC Interface	20
5-11	Diagnostic Connectors For Engine and Transmission	21
5-12	CHECK ENGINE and STOP ENGINE Lights	23
5-13	Vehicle Acceleration	26
5-14	Vehicle Gradeability	26
5-15	Vehicle Acceleration	27
5-16	Vehicle Gradeability	28
5-17	Vehicle Wheel Horsepower	28
5-18	ATEC/DDEC Simulator Board	29
5-19	Engine Diagnostics Demonstration	29
5-20	"Ride and Drive" Vehicles	30
5-21	M915 ATEC/DDEC Demonstrator	31
5-22	EMP Test Setup	33
5-23	ECU Installation and Instrumentation	33
5-24	EMP Instrumentation	34

M915 ATEC/DDEC DEMONSTRATOR FINAL REPORT

ABSTRACT

The M915 ATEC/DDEC Demonstrator Program consisted of the repower/regear of a U.S. Army M915 Linehaul Tractor, testing and demonstration/evaluation by the Government. The vehicle was repowered with a Detroit Diesel Series 60 engine and regeared with an Allison HT 755CR transmission. Both components included commercially-available electronic controls. Also included as part of the repower was a "Pow-R-Quik" engine air starter. The testing, demonstration, and evaluation was accomplished at several locations. Shakedown and vehicle performance testing occurred at General Motors Proving Grounds in Milford, Michigan. High Altitude Electro-Magnetic Pulse (HAEMP) testing was performed at the Government's White Sands Missile Range and is covered in a separate, classified Appendix to this report. Demonstrations for the Government took place at Milford Proving Grounds and at the Tank Automotive Command in Warren, Michigan. End user evaluation of the demonstrator vehicle was carried out at Fort Campbell, Kentucky.

M915 ATEC/DDEC DEMONSTRATOR FINAL REPORT

1.0 INTRODUCTION

This final technical report, prepared by Allison Transmission Division (ATD) of General Motors for the U.S. Army Tank Automotive Command (TACOM) under contract DAAE07-85-C-R078, describes the retrofit, testing, and demonstration/evaluation of an M915 Linehaul Tractor equipped with engine and transmission electronic controls and an engine air-start system (see Figure 1-1). The test vehicle was repowered with an electronically-controlled Detroit Diesel Series 60 engine, regeared with an Allison HT 755CR transmission with electronic controls, and equipped with a "Pow-R-Quik" air starter. The testing, demonstration, and evaluation were accomplished at GM's Milford Proving Grounds (GMPG), U.S. Army's White Sands Missile Range, and Fort Campbell, Kentucky, with the objective to determine the acceptability of the above components for use in tactical military vehicles.

2.0 OBJECTIVES

- Remove existing engine and transmission (if necessary) from the Government Furnished Equipment (GFE) M915 truck.
- Modify the GFE M915 test/demonstration vehicle to accept the new engine, transmission, and air starter. These modifications involve, but are not limited to, body/chassis, cooling, air induction/exhaust, and electronics/wiring.
- Consign and install in the GFE M915 a Detroit Diesel Series 60 engine which will provide 400 GHP at 2100 RPM governed speed.
- Consign and install an Allison HT 755CR transmission.
- Provide and install a "Pow-R-Quik" Model DS-23 air starter.
- Perform a shakedown test and functional checkout of the test vehicle at GMPG.
- Perform limited performance testing at GMPG.
- Make the modified M915 available for demonstration and evaluation by the Government at GMPG.
- Make the modified M915 available for Government High Altitude Electro-Magnetic Pulse (HAEMP) testing and further end user evaluation.
- Provide technical support for consigned engine and transmission during Government testing and evaluation.
- Address results of Government HAEMP testing in a separate, classified Appendix to this Final Report.

Figure 1-1. Demonstration of Electronically-Controlled M915

3.0 CONCLUSIONS

The modified M915 demonstrator vehicle was successfully equipped with the electronically-controlled Allison HT 755CR transmission, Detroit Diesel Series 60 and the "Pow-R-Quik" air starter. During performance testing, the vehicle exhibited enhanced operation and advanced engine/transmission diagnostics. The air starter was capable of starting the vehicle but its ability to perform a series of rapid restarts or extended engine cranking is questionable due to the limited air storage capacity. The U.S. Army troop familiarization usage evaluation was successfully performed at Fort Campbell, Kentucky.

The favorable results of the simulated High Altitude Burst Electro-Magnetic Pulse (HABEMP) testing, conducted at White Sands Missile Range, New Mexico, are covered in an Appendix (under separate cover) to this report.

4.0 RECOMMENDATIONS

4.1 Electronic Controls

This program has demonstrated the acceptability and versatility of Allison and Detroit Diesel electronic controls in military vehicles. It is recommended that future military vehicle specifications encourage the use of qualified electronic controls.

4.2 Air Starters

If air starters are going to be given further consideration for military vehicles, it is recommended larger air storage systems be investigated. The complications caused during deep water fording by the air system were not addressed and should also be investigated. Additionally, the ability to start one vehicle from another in a reasonable time should be evaluated.

5.0 DISCUSSION

5.1 Background

On 11 March 1986, Allison Transmission Division of General Motors received an M915 Linehaul Tractor (Registration number CF-8179; S/N OT-3814-45-10436) from the U.S. Army Tank Automotive Command for the purpose of demonstrating the acceptability in military vehicles of engine and transmission electronic controls, as well as air starters for diesel engines. To accomplish the above, the existing engine was removed (the vehicle had no transmission), the body and chassis were modified to accept the new components, and the new engine, transmission, starter, and accessories were installed.

The following sections of this report cover a brief description of the new engine and transmission, body/chassis modifications, electronic controls installation, performance testing, demonstrations/evaluation, and high altitude electro-magnetic pulse testing.

5.2 Engine and Transmission Description

5.2.1 Engine

5.2.1.1 General

The Detroit Diesel Series 60 engine is an advanced designed commercial diesel engine. It is a new product from the Detroit Diesel Corporation. The 6-cylinder, 4-stroke cycle is one engine with two displacements (11.1 and 12.7 liters), enabling power outputs ranging from 250 to 450 HP. The design simplicity of the Series 60, containing seven to thirty percent fewer parts than previous traditional engine designs, results in improved reliability and durability. Key features of the Series 60 include an overhead camshaft, parallel ports, an electronic control system and turbocharged air-to-air charge cooling (See Figure 5-1).

5.2.1.2 Intake and Exhaust

The intake and exhaust port configuration of the Series 60 is unique. The four valves per cylinder are located 90 degrees from what is seen on traditional engines. This parallel port configuration allows for very short, unobstructed intake and exhaust ports for efficient air flow, low pumping losses, and reduced heat transfer, allowing the engine to breathe more freely and run cooler.

Figure 5-1. Series 60 Engine Installation

5.2.1.3 Air-To-Air Cooling System

To enhance fuel economy, the Series 60 has been designed to use air-to-air charge cooling. Air-to-air offers fuel economy gains of 2-5 percent over traditional intake air cooling systems. Incoming air is compressed by the turbocharger and directed to a finned heat exchanger in front of the vehicle's radiator. The heat exchanger uses no liquid coolant, but relies instead on ram air for cooling the charge air, resulting in lowering intake air temperature from approximately 300°F (149°C) to below 100°F (38°C). This cooler air aids combustion, thereby increasing fuel economy.

5.2.1.4 Overhead Cam System

The overhead cam design allowed Detroit Diesel to optimize the design of the intake and exhaust air passages in the cylinder head for easier breathing. By eliminating the pushrods and lifters, the fuel injection and valve operating system are stiffened. This results in precise control of injection and valve events.

The injector plunger is mechanically-actuated by the cam/rocker arm mechanism and generates up to 20,000 PSI injection pressure. The overhead camshaft assembly has relatively low contact stress, fewer parts, 40 less wear surfaces and special roller and lobe finishing. It is also a simpler design, making it much easier to service. As an added benefit of overhead camshaft construction, there was space available to accommodate eight head bolts per cylinder. Almost equally spaced, the head bolts provide a uniform load on the gasket and liner.

5.2.1.5 Detroit Diesel Electronic Controls

The Series 60 engine features integral electronic controls called Detroit Diesel Electronic Controls (DDEC). Its major components are the Electronic Control Module (ECM) and the Electronic Unit Injectors (EUI). The ECM is the "brain" of the system, receiving electronic inputs from the vehicle driver as well as engine-mounted sensors that provide information electronically, such as oil pressure and temperature, engine speed and intake manifold pressure. This information is used to control both the quantity of fuel injected and the injection timing.

The electronics contain a PROM (Programmable Read Only Memory) which is mounted in the ECM and encoded with the engine's performance characteristics. Included in the PROM is information to control the horsepower rating, torque curve, maximum engine speed, and optional protection devices. The ECM processes this information and sends electronic signals to the Electronic Unit Injectors where the precise amount of fuel is injected.

5.2.2 Transmission

5.2.2.1 General

The Allison HT 755CR transmission consists of a three-element torque converter, constant mesh planetary gearing and hydraulically-actuated multiple disc clutches with automatic gear selection in each range. The transmission is equipped with built-in downshift and reverse inhibitors and has provisions for mounting and/or operating a parking brake, power takeoff, speedometer drive, neutral start switch, and reverse signal switch. Two hydraulic retarder options and an engine-driven PTO option are also available. The HT 754CR transmission currently used in the M915Al Linehaul Tractor and the HT 755CR transmission are identical with the exception of their controls. The HT 754CR uses hydraulic controls where the HT 755CR uses the Allison Transmission Electronic Control (ATEC).

5.2.2.2 Allison Transmission Electronic Controls

ATEC is a computer-based control system designed to control transmission functions including shifting and self-diagnostics. The main components of the ATEC system are the Electronic Control Unit (ECU), shift selector, throttle position sensor, electro-hydraulic valve body and wiring harnesses (see Figure 5-2). The ATEC controls replace the hydraulic valve body, output governor, throttle modulator and mechanical shift selectors used on earlier hydraulically-controlled transmissions.

Figure 5-2. ATEC System Components

5.2.2.3 Electronic Control Unit

The Electronic Control Unit (ECU) is the "brains" of the ATEC system. It is a microcomputer which controls shifts based on throttle position, transmission output speed, shift selector position, sensors in the transmission and the programmed shifting logic. Within the ECU there is a Programmable Read Only Memory chip (PROM). This computer chip is programmed by ATD to match the vehicle requirements and allows the ECU to command shifts accordingly. There are two versions of the ECU depending on the application requirements.

5.2.2.4 Throttle Position Sensor

Shift modulation may be achieved by sensing a signal from a resistive sensor attached by cable to the fuel control lever or by a module that translates the throttle position signal which is transmitted by DDEC engine controls (the latter being used for this program). The signal is then converted to a percent throttle by the ECU. The ECU automatically adjusts the percent throttle conversion to compensate for installation tolerances and wear.

5.2.2.5 Electro-Hydraulic Valve Body

With ATEC, the flyweight governor, modulator cable and shift signal valves used on hydraulically-controlled transmissions are not required. The ATEC control valve body is common for all transmissions within a model. Shift characteristics are determined by constants programmed into the PROM instead of the springs and low pressure signals employed in hydraulic controls. ATEC controls result in a simplified valve body, more precise shifts and reduced transmission assembly inventory requirements as compared to similar hydraulically-controlled transmissions.

5.2.2.6 Diagnostics

Self-diagnostics and simplified service troubleshooting are also advantages of ATEC. The ECU monitors the entire ATEC system for indications of trouble. If a problem is detected, the controls will signal the operator through the "CHECK TRANSMISSION" light on the dash. For more serious trouble indications, a buzzer and light in the shift selector indicate that operation should be stopped and service performed immediately. Once a trouble indication is registered by the ECU, a code is stored in its memory. By using a service diagnostic tool (see Figures 5-3 and 5-4) and the service manual, the trouble area can be quickly isolated. Service time can be greatly reduced.

5.2.2.7 Abuse Protection

In addition, ATEC has standard abuse protection logic to inhibit operations which could be detrimental to the transmission, engine and vehicle. By notifying the operator when trouble is detected and inhibiting some operations that could be abusive, transmission life can be preserved.

Figure 5-3. Modified M915 Diagnostic Demonstration

Figure 5-4. Transmission Diagnostic Tool

5.2.3 Controls

The Detroit Diesel Electronic Controls II (DDEC) and Allison Transmission Electronic Controls I (ATEC) were designed to commercial requirements with reference to MIL-STD-810, MIL-HDBK-217, and MIL-HDBK-253 for military requirements. Both systems were subjected to high altitude electro-magnetic pulse testing. The results of this test are covered in a separate Appendix to this report.

5.3 Body/Chassis Modifications

5.3.1 Cooling System

The portion of the tractor body/chassis needing the most rework for this installation was in the area of the radiator. The radiator was replaced, the transmission and power steering cooler relocated, and the engine's air-to-air cooler was added.

5.3.1.1 Radiator

The radiator supplied with the vehicle was replaced by the radiator assembly used in the M915A1. The new assembly incorporated a bottom tank cooler for the transmission and a combination air-to-oil cooler for transmission and power steering systems. Since the new assembly is five inches wider than the original assembly, rework of the mounting system was required.

5.3.1.2 Engine Air-To-Air Cooler

The Detroit Diesel Series 60 engine uses an air-to-air finned heat exchanger to cool the charge air. This heat exchanger was mounted on the front of the radiator (see Figures 5-5 and 5-6).

5.3.1.3 Transmission/Steering Pump Air-To-Air Cooler

On the M915Al tractor, the transmission/steering pump air-to-air cooler is mounted in front of the radiator. On this vehicle, the charge air cooler was mounted in front of the radiator so the transmission/steering pump heat exchanger was relocated behind the radiator. The radiator bottom tank cooler for the transmission and air-to-air transmission cooler are connected in series.

Figure 5-5. Charge Air Duct From Intake To Cooler

Figure 5-6. Charge Air Duct From Cooler To Engine Intake

5.3.1.4 Hoses

New hoses for the radiator, power steering, charge air, and transmission cooling systems were fabricated, rerouted and supported to minimize interference and wear from any contact.

5.3.2 Engine Mounts

The front engine mount was reworked and new mounting pad insulators were installed. New engine rear mounts were fabricated and installed.

5.3.3 Intake and Exhaust

The air intake system was modified to incorporate the engine change and the addition of the engine air-to-air cooler. The exhaust system was altered to accommodate the new engine.

5.3.4 Axles

Spacers for the front axle were fabricated and installed to prevent steering tie rod and engine oil pan contact.

5.3.5 Propeller Shaft

A new propeller shaft was fabricated and installed to connect the new transmission to the existing tandem axles.

5.3.6 Front End Rework

Due to the cooling system changes reported in paragraph 5.3.1, the following rework was required:

- Installed new radiator mounting brackets.
- Modified and moved radiator grille forward one inch to provide room for engine air-to-air cooler.
- Modified front bumper to allow forward movement of grille.
- Installed new fan shroud on radiator.
- Modified engine cowling to compensate for one inch forward movement of grille.

5.3.7 Engine Air Starter

The vehicle supplied by TACOM was already equipped with a "Pow-R-Quik" engine air starter system. This system includes an air storage tank, muffler, solenoid valve, installation kit, miscellaneous brackets and piping, and starter motor. To adapt the existing air start system to the Detroit Diesel Series 60 engine, the starter motor had to be changed. A "Pow-R-Quik" air starter, part number DS-23 RH1, was installed.

5.3.8 Miscellaneous New and Reused Components

The existing alternator, power steering pump, and fan were reused. A new electronic throttle pedal, low water sensor for the radiator, and oil fill tubes for the engine and transmission were installed. The standard M915Al mechanical speedometer drive was used.

5.4 Electronic Controls Installation

5.4.1 Transmission

The Allison HT 755CR transmission with Allison Transmission Electronic Controls (ATEC) was installed in the vehicle.

5.4.1.1 Electrical Harness Installation

Two separate wiring harnesses are used to connect the components of the ATEC system. A cab harness connects the components most commonly found in an environmentally protected area (within the cab): the ECU, shift selector, Digital Data Link (DDL) scanner, and the necessary connections to interface with the vehicle electrical system. The second, a chassis harness, connects the ECU to the components located outside the protected area: transmission, throttle position signal unit (located in the cab) and speed sensor.

The wiring harnesses were positioned such that they were directed upward into the various components to prevent the harness from directing moisture or contaminants to the connectors. Elastomer edge guards were used when passing through sheet metal. Harnesses were secured at 200-300 mm (8-12 inches) from the various connectors and not subject to relative motion with the various components. All connectors used with the various components have a locking mechanism. The connectors were installed to attain a positive locking engagement when assembled. All wiring harnesses were routed carefully to avoid sharp bends and binding.

5.4.1.2 Vehicle Interface Installation

The ATEC system installed in the vehicle is designed for use with 12-volt, direct current, negative-ground vehicle electrical systems. Primary components of the ATEC system are connected by the cab and chassis harnesses. Various other electrical connections are required to adapt the ATEC to the vehicle electrical system. A connector is provided as part of the harness assemblies to interface with the appropriate vehicle circuits. These connections are defined in this section.

5.4.1.2.1 ATEC Electrical Power Requirements. Voltage requirements for this system are:

	12-Volt System
Minimum	10 Volts
Maximum Continuous	16 Volts
Maximum Intermittent	19 Volts

- 5.4.1.2.2 <u>Wire 203 Continuous Memory Power</u>. This portion of the harness powers the memory for diagnostic codes and throttle sensor calibration value. This memory is powered, even while the engine is shut down and the vehicle master ignition switch is off, in order for the calibration information to be saved from day to day and error codes to be saved for later readout. If power to this circuit is interrupted, the current calibration value and any stored diagnostic codes will be lost. Upon repower, the proper calibration will be established and any unresolved error codes will be regenerated by ATEC with little, if any, loss in performance. Current requirements for this memory in a 12-volt system are 10mA maximum.
- 5.4.1.2.3 Wire 225 or 235 Shift Selector Power. This wire powers the shift selector with 12 volts when the master ignition switch is turned on. The selector requires power (before the engine is started) to enable the neutral-start circuitry. Only one of these two wires is required for an installation. Current requirements are:

	12-Volt System
Continuous	30 mA
Peak	90 mA

5.4.1.2.4 <u>Wire 202A and 223A ATEC ECU Power</u>. Power for the ECU is supplied from the vehicle master ignition switch. Lengths and sizes of these two wires (and their corresponding vehicle interface wires) are chosen to assure 10 volts minimum to the ECU under all operating conditions of the vehicle electrical system. Two wires are utilized simply to provide redundancy and allow use of smaller gage cable. Power requirements vary due to operating conditions and are:

	12-Volt System
Maximum Continuous	
Neutral	2.8 Amp
In Range-Converter	3.5 Amp
In Range-Lockup	4.2 Amp
Peak During Shifts	6.0 Amp

- 5.4.1.2.5 Neutral Start. Wire 231 goes from OPEN to GROUND whenever the transmission is placed in neutral. This must be used with an external relay for functions requiring neutral operation; e.g., engine starting. Unlike other relays in the system, this provision can handle relays down to 30 ohms DC resistance.
- 5.4.1.2.6 Reverse Warning. Wire 214 goes from OPEN to GROUND whenever the transmission is placed in reverse. This must be used with an external relay for functions requiring reverse operation; e.g., backup lights and reverse warning horn. This feature is used in lieu of a reverse pressure sensor.
- 5.4.1.2.7 CHECK TRANSMISSION. Wire 215 goes from GROUND to OPEN whenever an alarm condition occurs in the system. This is used with an external relay to drive a dash-mounted "CHECK TRANSMISSION" light.
- 5.4.1.2.8 <u>Diagnostic Mode</u>. Wire 216A needs to be grounded by a switch mounted in the operator area to place the ATEC into the diagnostic mode. This will enable diagnostic codes to be identified by the number of flashes of the "CHECK TRANSMISSION" light.
- 5.4.1.2.9 System Grounds. Wires 208 and 209, ECU grounds, are connected to the negative side of the vehicle batteries. Wire 201, ECU electro-magnetic shielding ground, runs directly out of the J2-ECU connector and must be grounded to the vehicle chassis at that point. Wire 234 and wire 230, selector-lamp ground, are connected to the vehicle ground.

5.4.1.3 Electronic Control Unit (ECU)

The ECU was mounted inside the M915 vehicle cab on the back of the driver's seat pedestal which is an environmentally protected area. The ECU was mounted such that the two connectors were positioned horizontally. Clearance, accessibility, and slack were allowed for harness installation/removal without dismounting the ECU. The ECU location also provided easy removal for service or replacement. The mounting also provided a metal structure to help absorb its approximately 36 watts of continuously generated heat; thereby increasing the ECU life.

5.4.1.4 Shift Selector

The shift selector is a push-button type utilizing 3/4-inch square membrane push-button switches with backlighting controlled from the instrument panel dimmer. This component is totally electronic with no moving parts. The face of the selector is mounted a minimum of 20 degrees from flat. The shift selector is provided with four holes for mounting to an instrument panel or pedestal. The selector was mounted to a pedestal and the pedestal was then mounted to the M915 vehicle floor with four bolts. The shift selector has a built-in "DO NOT SHIFT" light/beeper to a signal when shift selection has been impaired.

The shift selector was positioned for maximum operator comfort, viewing and accessibility at the operator's right hand beside the seat (see Figure 5-7).

The electrical harness connecting the shift selector to the ECU was routed through the center of the pedestal. Slack was provided for easy installation/removal.

Figure 5-7. Shift Selector Installation

5.4.1.5 CHECK TRANSMISSION Light

A "CHECK TRANSMISSION" light was installed on a small add-on dash panel attached to the bottom of the dash (see Figure 5-8).

5.4.1.6 Throttle Position Signal Interface Unit

The ATEC/DDEC throttle signal interface unit to link the throttle position signal used by the DDEC system to the ECU of the ATEC system was installed. By utilizing this link, only one throttle position sensor was required for both the ATEC and DDEC systems. The throttle signal interface unit was attached to the firewall below the dash.

5.4.1.7 Display Data Line (DDL) Connector

The DDL feature is designed for use with a hand-held scanner for service functions. The diagnostic mode can be attained by the scanner when it is plugged into the DDL connector. Hence, this connector was located in the driver's area for easy access by a service technician.

5.4.1.8 Speed Sensor

A speed signal is generated from a 16-tooth gear by a magnetic speed sensor mounted on the transmission output cover. This signal represents transmission output speed which is directly related to vehicle speed. This sensor is provided in the main transmission assembly and is integral with each unit.

5.4.2 Engine - DDEC Installation

The Series 60 engine with DDEC system and the HT 755CR with ATEC were installed in the modified M915 vehicle.

5.4.2.1 Electrical Harness Installation

Three separate wiring harnesses are used to connect the components of the DDEC prototype system:

- A 16-pin connector was used to supply battery power and ground to the engine-mounted Electronic Control Module (ECM). Additionally, this connector contains the circuits that supply power from the ECM to the Electronic Unit Injector (EUI) solenoids.
- A 30-pin vehicle harness assembly was used to interface the Electronic Foot Pedal Assembly (EFPA), coolant level sensor, diagnostic connector, switched ignition feed, and "CHECK" and "STOP" engine warning lights with the engine-mounted Electronic Control Module (ECM).
- A 30-pin engine harness assembly was used to connect the engine-mounted sensors with the ECM. These sensors include the oil pressure, oil temperature, fuel temperature, turbo boost, and synchronization/timing reference sensors.

All sensor and ECM connectors used in the engine compartment utilize silicon seals and have a positive snap lock or screw thread type engagement. This ensures that the connectors are capable of withstanding the harsh environment typically encountered in the engine compartment.

Figure 5-8. CHECK TRANSMISSION Light

5.4.2.2 Power Harness

DDEC is a 12-volt, direct current, negative ground system. A separate six-wire power harness provides a direct battery connection to the ECM power and ground circuits in the 16-pin connector. ECM main run power, as well as power for the front and rear three injector solenoids, is supplied by two 20-amp fuses included in the fuse plate assembly. Dual battery power and ground circuits are used to provide redundancy and to minimize voltage drop.

5.4.2.2.1 <u>DDEC Operating Voltages</u>. The following are operating voltages meaured at the ECM:

- 24 to 16 volts DC Operation for one minute with degraded accuracy. Continued operation at this level may damage the system.
- 16 to 11 volts DC Voltage range for all normal accuracy.
- 11 to 7 volts DC Operation with degraded accuracy.
- 7 to 0 volts DC No damage to system. Engine may not start or run.
- 0 to -16 volts DC When wiring is properly fused, no damage to system (fuses may blow).

Normal Accuracy Defined - Beginning of injection and fuel pulse signal are within 0.5 crank degrees of the computed value.

Degraded Accuracy Defined - Beginning of injection and fuel pulse signal are within 1.0 crank degrees of the computed value.

5.4.2.2.2 Wires 240 and 241 Continuous Battery Power. These wires supply continuous battery power for ECM main run and injector solenoids. This power is supplied while the engine is shut down and the vehicle master ignition switch is off. However, disruption of this power (battery disconnected) will not result in a loss of any previously logged error codes or affect operation of the system once power is restored. Current requirements are:

Ignition Off	10 mA
Ignition On/Engine Stopped	300 mA (min)
	500 mA (max)
With Engine Operating At:	,
Idle	1.0 A
1800 RPM, Full Load	3.2 A
2100 RPM, Full Load	3.5 A

5.4.2.2.3 Wire 150 System Ground. These wires are connected directly to the negative side of the vehicle batteries.

5.4.2.3 Vehicle Harness Assembly

This harness is used to connect the various DDEC components within the vehicle cab to the engine-mounted ECM. In addition, the coolant level sensor signal wire is included as part of this harness.

5.4.2.3.1 Electronic Foot Pedal Assembly (EFPA). Wires 916 and 952, the +5V supply and sensor return, provide power and ground for the cab floor-mounted foot pedal assembly (see Figure 5-9). Wire 417 is the signal line from the throttle position sensor to the ECM.

Figure 5-9. Throttle Foot Pedal Assembly

When DDEC is used in conjunction with the transmission's ATEC system, wire 908 supplies a signal representative of throttle position to the ATEC ECU. By utilizing a throttle position interface unit, only one throttle position sensor is required for a combined DDEC/ATEC system (see Figure 5-10).

5.4.2.3.2 Coolant Level Sensor (CLS). This sensor is mounted in the radiator top tank. Its function is to indicate a low coolant level via illumination of the "CHECK" and "STOP" engine lights in the vehicle cab. This sensor provides one of three engine protection features that are standard with DDEC.

Wire 439 provides +12V ignition power for the CLS. Battery negative is used for sensor ground. Wire 115 is the sensor signal to the ECM.

BASIC INTERFACE

Figure 5-10. DDEC/ATEC Interface

- 5.4.2.3.3 <u>Diagnostic Connector</u>. This connector, mounted below the dash panel (see Figure 5-11), is designed for use with a hand-held diagnostic scanner for service functions. The scanner is a multi-purpose tool which can aid troubleshooting by displaying error codes and engine operating parameters.
- 5.4.2.3.4 Switched Ignition. Wire 439 is wired to the ignition switch to provide +12V ignition sense to the ECM as well as the coolant level sensor, "CHECK," and "STOP" engine lights.

Figure 5-11. Diagnostic Connectors For Engine and Transmission

- 5.4.2.3.5 CHECK ENGINE Light. "CHECK ENGINE" light was installed in the vehicle dash (see Figure 5-12). This amber (yellow) light illuminates to indicate either the presence of an error code detected by the system or an engine protection warning code. Wire 419 is the "CHECK ENGINE" light circuit to the ECM.
- 5.4.2.3.6 STOP ENGINE Light. A "STOP ENGINE" light was also installed in the vehicle dash (see Figure 5-12). This red-colored light illuminates if the system detects the loss of coolant, low oil pressure, or high oil temperature. Wire 509 is the "STOP ENGINE" light circuit to the ECM.
- 5.4.2.3.7 <u>Diagnostic Mode</u>. Wire 451 is grounded by a switch mounted in the operator area to place the DDEC system into the diagnostic mode. Codes can then be identified by the number of flashes of the "CHECK ENGINE" light.

5.4.2.4 Engine Harness Assembly

The factory-installed engine harness interfaces engine sensors to the ECM as part of the standard engine protection, fuel consumption, smoke control, and injector timing features of the system. Wire 416 provides the +5V power for the oil pressure and turbo boost sensors. Wire 452 provides sensor return for oil pressure, oil temperature, fuel temperature, and turbo boost sensors.

- 5.4.2.4.1 Oil Pressure Sensor (OPS). Wire 530 provides the signal indicating engine oil pressure. This is used as part of the standard engine protection feature of the DDEC system.
- 5.4.2.4.2 Oil Temperature Sensor (OTS). Wire 120 provides the signal indicating engine oil temperature. Like the coolant level and oil pressure sensors, it is used as part of the engine protection feature. In addition, it is used to enhance cold startability and white smoke control at engine start-up.
- 5.4.2.4.3 <u>Fuel Temperature Sensor (FTS)</u>. Wire 472 provides the signal indicating fuel temperature. This value is used by the ECM to compensate for fuel density changes with temperature as part of the fuel consumption calculation.
- 5.4.2.4.4 <u>Turbo Boost Sensor (TBS)</u>. Wire 432 provides the signal indicating turbocharger boost pressure into the intake manifold of the engine. Based on input from this sensor to the ECM, engine fueling during accelerations is adjusted to minimize black exhaust smoke.
- 5.4.2.4.5 <u>Synchronization Reference Sensor (SRS)</u>. This magnetic sensor provides a once per engine revolution signal to the ECM upon engine start-up to establish the correct injector firing order. Wires 111 and 112 provide this signal.
- 5.4.2.4.6 <u>Timing Reference Sensor (TRS)</u>. This magnetic sensor provides a once per cylinder indication to the ECM to establish injector timing and fueling as a function of engine speed, throttle position, turbo boost, and oil temperature. Wires 109 and 110 provide this signal.

Figure 5-12. CHECK ENGINE and STOP ENGINE Lights

5.5 Performance Testing

5.5.1 General

Per Section C.2 of the contract, various vehicle performance tests were required. The form of these tests were agreed upon in a 2 June 1986 letter from ATD to TACOM and confirmed in a 21 July 1986 letter from TACOM to ATD (see Appendix A). The tests to be completed were a shakedown test, stabilized speed on grade, acceleration, panic brake stop, and engine air starter tests. The Contracting Officer's Technical Representative from TACOM observed all tests with the exception of the shakedown. The vehicle loading for performance testing was as follows:

Weight on Steering Axle = 11,610 lbs Weight on Driving Tandem Axle = 35,040 lbs Weight on Trailer Tandem Axle = 33,670 lbs Gross Combination Weight = 80,320 lbs

5.5.2 Shakedown Test

The shakedown test was performed at General Motors Proving Grounds (GMPG) at Milford, Michigan. Sufficient mileage was run to verify proper operation of all modified systems. The test included operation over the entire operating range of the Detroit Diesel Series 60 engine and the Allison HT 755CR transmission. During the shakedown test, it was discovered the windshield wipers did not work. It was also determined the service brakes would self-apply at random intervals (occurred twice in approximately 300 miles of testing), slowly applying the brakes to the vehicle. These conditions were reported to TACOM and assumed to have been fixed at Fort Campbell, Kentucky, prior to troop evaluation.

5.5.3 Stabilized Speed on Grade

The loaded vehicle was operated on grades of 16%, 7.2%, and 4.4% to determine maximum stabilized speeds. Those speeds recorded are as follows:

On 16% Grade: 5.9 MPH (9.5 Km/Hr)
On 7.2% Grade: 14.3 MPH (23.0 Km/Hr)
On 4.4% Grade: 26.1 MPH (42.0 Km/Hr)

5.5.4 Acceleration Tests

The loaded vehicle was operated on the military straightaway at GMPG to determine elapsed time from zero miles per hour to 20 MPH, 30 MPH, 50 MPH, and vehicle top speed. Each elapsed time was measured on a separate acceleration run. The vehicle top speed was recorded as 62 MPH (99.8 Km/Hr) with the engine operating on the governor droop. The results of the acceleration test were as follows:

0 to 20 MPH (32 Km/Hr): 12.3 Seconds 0 to 30 MPH (48 Km/Hr): 21.4 Seconds 0 to 50 MPH (80 Km/Hr): 56.5 Seconds 0 to 62 MPH (99.8 Km/Hr): 106.8 Seconds

5.5.5 Panic Brake Stops

Panic brake stops were performed from various vehicle speeds to zero miles per hour to determine if engine stall would occur. For safety purposes and to allow quicker zeroing of the driveline speed, the tests were performed with the tractor only (no trailer). The panic brake stops were initiated on separate runs from 10 MPH (16 Km/Hr), 20 MPH (32 Km/Hr), 30 MPH (48 Km/Hr), and 40 MPH (64 Km/Hr). No engine stall occurred on any of the runs.

5.5.6 Engine Air Starter Tests

To obtain some data on the capabilities of an engine air starter, two tests were performed. In the first test, the tractor was operated until the air starting system was fully charged. The engine was then shut down. With the engine prevented from starting but free to crank, the starter motor was engaged and elapsed time and cranking RPM was recorded. The results were as follows:

Cranking Speed	Elapsed
(in RPM)	(in Seconds)
214	1.0
288	1.5
242	2.0
267	2.5
255	3.0
135	3.5
24	4.0
7	4.5
1.75	5.0
0.33	5.5
0.0	6.0
0.0	6.5
0.0	7.0

In the second test, the tractor was operated until the air starter system was fully charged then shut down. This test was to determine how many times the engine could be started with an initial fully charged system and only ten seconds of engine operation at idle speed between engine start attempts. The installed air start system, operated as described above, was capable of starting the engine two times. (See Appendix A for confirmation of all test results.)

5.6 Performance Comparison

5.6.1 Actual vs Predicted Performance

Allison Transmission Division computerized performance prediction program, SCAAN (System for Computerized Application ANalysis), was used to predict the performance of the test vehicle. The predicted performance covers the entire vehicle operating band and is compared to the actual test results in Figures 5-13 and 5-14. The computer-modeled performance correlates fairly well with the actual test results. The small differences could be attributed to slight differences in actual vs model dynamic tire size, rolling resistance, wind resistance, etc. Even with the small variations, the computer prediction can be confidently used to judge the vehicle's performance for speeds other than those tested.

Figure 5-13. Vehicle Acceleration (Predicted vs. Actual)

Figure 5-14. Vehicle Gradeability

5.6.2 M915A1 vs ATEC/DDEC Demonstrator Performance

There was no baseline vehicle available for performance comparison. To allow the reader a point of reference, Allison's SCAAN computer performance prediction program has been employed. The same vehicle computer model is used for the "demonstrator" and the M915A1 with the exception of engine and transmission. The weight of each model has been left at the test weight of 80,320 lbs. The predicted performances of both vehicles are provided in Figures 5-15, 5-16, and 5-17. Tabular data on the performance prediction for each vehicle is located in Appendix B.

5.7 Demonstrations and Evaluations

5.7.1 General

As part of the contract, the M915 ATEC/DDEC test vehicle was to be demonstrated for the Government. This was accomplished with one demonstration at the General Motors Proving Grounds (GMPG) in Milford, Michigan, and another at the Tank Automotive Command (TACOM) in Warren, Michigan. Also at the request of TACOM, the test vehicle was made available for troop evaluation at Fort Campbell, Kentucky, and high altitude burst electro-magnetic pulse testing at White Sands Missile Range, New Mexico.

5.7.2 GMPG Demonstration

The demonstration at GMPG took place on 9 July 1986 and was limited to no more than 15 attendees from TACOM. The program consisted of a verbal/viewgraph presentation, electronic controls demonstration, and vehicle ride and drive.

Figure 5-15. Vehicle Acceleration

Figure 5-16. Vehicle Gradeability

Figure 5-17. Vehicle Wheel Horsepower

5.7.2.1 Electronic Controls Demonstration

During the static display of the test vehicle and with the help of the ATEC/DDEC simulator board, the following advantages of electronic controls were demonstrated and explained (see Figures 5-18 and 5-19).

Figure 5-18. ATEC/DDEC Simulator Board

Figure 5-19. Engine Diagnostics Demonstration

- Engine diagnostics.
- Transmission diagnostics.
- Engine start-up smoke elimination.
- Engine idle time limiter.
- Transmission protection sensing and alarms.
- Engine protection sensing and alarms.
- Hand throttle capabilities.
- Transmission neutral-to-range shift inhibit with parking brake on.
- Detailed display, demonstration, and explanation of individual electronic components with simulator board.

5.7.2.2 Ride and Drive Demonstration

The M915 demonstrator vehicle, as well as two other ATD electronically-controlled vehicles, were made available for the participants to either ride or drive (see Figure 5-20). These vehicles were:

- 1985 GMC dump truck with a Detroit Diesel 6-71 engine and an Allison HTB 755DR transmission (ATEC).
- 1986 Kenworth linehaul tractor with a Detroit Diesel 8V92TA engine (DDEC) and an Allison HTB 755CR transmission (ATEC).

Figure 5-20. "Ride and Drive" Vehicles

The electronic controls advantages demonstrated in the M915 test vehicle (see Figure 5-21) were:

- Two engine power curves in one engine.
- Two transmission shift schedules in one transmission.
- Engine overspeed protection.
- "Limp Home" capability.

Transmission retarder capabilities were demonstrated in both ATD commercial vehicles. The ability of the transmission and engine electronic controls to work together for vehicle cruise control was demonstrated in the Kenworth linehaul tractor.

Figure 5-21. M915 ATEC/DDEC Demonstrator

5.7.3 TACOM Demonstration

The demonstration at the Tank Automotive Command in Warren, Michigan, took place on 11 August 1986. The program included verbal/viewgraph presentations, test vehicle static display, ATEC/DDEC operating simulation with the simulator board, and a question and answer period.

5.7.4 Troop Evaluation

At TACOM's request, Allison Transmission and Detroit Diesel provided technical support for the demonstrator vehicle while it was operated at Fort Campbell, Kentucky, for troop evaluation. In late July 1987, a briefing was presented covering performance characteristics, operating instructions, daily maintenance, diagnostic procedures, and non-modified vehicle system concerns. As of the beginning of August 1988, the demonstrator vehicle had been successfully operated for approximately seven hundred miles without engine or transmission incident.

5.7.5 High Altitude Burst Electro-Magnetic Pulse Test Evaluation

The M915 ATEC/DDEC demonstrator vehicle was subjected to high altitude burst electromagnetic pulse (HABEMP) testing at White Sands Missile Range, New Mexico, from September 1986 to July 1987 (see Figures 5-22, 5-23 and 5-24). A discussion of the results of that testing is covered under separate Appendix to this report.

Figure 5-22. EMP Test Setup

Figure 5-23. ECU Installation and Instrumentation

Figure 5-24. EMP Instrumentation

M915 ATEC/DDEC DEMONSTRATOR FINAL REPORT

APPENDIX A

Indianapolis Operations

P 0 Box 894 Indianapolis, Indiana 46206-0894 Phone (317)-242-5000 TWX 810-341-3120 TELEX: 276411 GM COMM IND

June 2, 1986

Commander U.S. Army Tank-Automotive Command Attn: AMSTA-RGT (Roman Rudnitsky) 28251 Van Dyke Avenue Warren, MI 48397-5000

Subject: M915 Demonstrator Program

Contract DAAE07-85-C-R078

Performance Testing

Dear Roman:

Per the requirements of Section C.2 of the subject contract, the following test plan is proposed:

- Shakedown Test The test vehicle loaded to approximately 80,000 pounds GCW will be operated on the "Truck Test Loop" at G.M. Proving Grounds, Milford, Michigan. Sufficient mileage will be run to assure proper operation of all modified systems. This test shall also include operation over the entire operating range of the Series 60 Engine and the HT-755CR transmission. A functional checkout shall be made of all safety systems such as brakes, air lines, warning devices, lights, etc.
- 2) Performance Test - The test vehicle loaded to approximately 80,000 pounds GCW will be operated on 16%, 7.2% and 4.4% grades to determine maximum stabilized speeds. The vehicle will also undergo acceleration tests of 0 Km/Hr to 32, 48, 80 Km/Hr and maximum speed on the paved "Military Straightaway".

The above tests will be scheduled and run at Detroit Diesel Allison's convenience. The Contracting Officer's Technical Representative can be notified 24 hours prior to the tests if so desired.

Please provide your approval of the above prior to June 20, 1986. If you have any questions, please don't hesitate to call.

Sincerely.

B. E. Adams

Military Applications

B. E. adan Hair

1392w/bjw

L.K. Johnson, P. L. Perdue, K. D. Struthers, J. J. Monette, C. W. Burley

EA/M915-17

10 Lat's Get It Tegether Safety Belts Save Lives

DEPARTMENT OF THE ARMY

UNITED STATES ARMY TANK-AUTOMOTIVE COMMAND WARREN, MICHIGAN 48397-5000

July 21, 1986

AMSTA-RGT

Mr. B. E. Adams
Detroit Diesel Allison Division
General Motors Corporation
Post Office Box 894, Speed Code E-11
Indianapolis, Indiana 48206-0894

Dear Mr. Adams:

The proposed test plan, submitted in your letter of July 2, 1986, has been reviewed.

As we understand it, the performance test will include the loaded vehicle that will be operated on 16, 7.2, and 4.9 percent grades to determine the stabilized speeds. The vehicle will also undergo acceleration test of 0 kilometers per hour to 32, 48, and 80 kilometers per hour, and maximum speed on paved "Military Straightway".

We would like to include panic brake stops from 64, 48, 32, and 16 kilometers per hour. The vehicle should be bobtail (no trailer).

Please make attempt to obtain history of starter cranking revolutions per minute (rpm) versus time without engine starting and running. For second portion of test, start and run engine for ten seconds and shut down. Start and run engine again for 10 seconds, and keep operating until the starter will not start the engine anymore.

We are also asking that the Contracting Officer's Technical Representative be notified minimum of 24 hours prior to the tests.

As long as the above criteria are observed, the approval for the above tests is given.

Please rescind letter of July 17, 1986.

. If you have any questions, please contact the undersigned at (313) 574-5189.

Sincerely,

Roman G. Rudnitsky
Contracting Officer's

Technical Representative

DEPARTMENT OF THE ARMY

UNITED STATES ARMY TANK-AUTOMOTIVE COMMAND WARREN, MICHIGAN 48397-5000

April 6, 1987

AMSTA-RGT

Mr. B.E. Adams
Military Applications
Detroit Diesel Allison
P.O. Box 894
Indianapolis, Indiana 46206-0894

Dear Mr. Adams:

With reference to your letter of March 31, 1987, enclosed are the original signed papers for the M915 Demonstrator Contract DDAE07-85-C-R078 Performance Test.

If you should have any questions regarding the enclosed, please call Mr. Ted Zimmerman at (313) 574-5158.

Sincerely,

Peter C. Manning Chief, Transmission and

Integration Branch

Enclosures

M915 DEMONSTRATOR CONTRACT DDAE07-85-C-R078 PERFORMANCE TEST

STARTER CRANKING

1)	Cranking	Speed	0 1.0	Second:	214	RPM
			1.5	Seconds:	288	RPM
			2.0	Seconds:	242	RPM
			2.5	Seconds:	267	RPM
			3.0	Seconds:	255	RPM
			3.5	Seconds:	_/35	RPM
			4.0	Seconds:	24	RPM
			4.5	Seconds:		RPM
			5.0	Seconds:	1.75	RPM
			5.5	Seconds:	<u>0.33</u>	RPM
			6.0	Seconds:		RPM
			6.5	Seconds:		RPM
			7.0	Seconds:		RPM
			7.5	Seconds:		RPM
			8.0	Seconds:		RPM
			8.5	Seconds:		RPM
			9.0	Seconds:		RPM
			9.5	Seconds:	0	RPM
			10.0	Seconds:		RPM

2) With the starter air reservoir fully charged, how many starts of the engine can be accomplished if the engine is allowed to run only 10 seconds after starting?

2 Times

B. E. Adams
Military Applications
Detroit Diesel Allison

<u>3-30-87</u> Date

La Roman Rudnitsky
Contract Tech Pennese

Date

Contract Tech. Representative

U.S. Army TACOM

1557w/bjw

M915 DEMONSTRATOR CONTRACT DDAE07-85-C-R078 PERFORMANCE TEST

STABILIZED SPEED ON GRADE

1) On 16% Grade:

14.3 MPH 23.0 Km/Hr 2) On 7.2% Grade:

3) On 4.4% Grade: 26./ MPH 42.0 Km/Hr

ACCELERATION TESTS

1) 0 to 32 Km/Hr (20 MPH):

2) 0 to 48 Km/Hr (30 MPH): 21.4 Seconds

3) 0 to 80 Km/Hr (50 MPH): <u>56.5</u> Seconds

4) 0 to Top Speed: <u>62</u> MPH <u>99.8</u> Km/Hr <u>106.8</u> Seconds

PANIC BRAKE STOP: (All Stops from Full Throttle Condition)

DID NOT STALL 1) From 16. Km/Hr (10 MPH):

2) From 32 Km/Hr (20 MPH): DID NOT STALL

DID NOT STALL 3) From 48 Km/Hr (30 MPH):

DIDNOT STALL 4) From 64 Km/Hr (40 MPH):

E. Adams Roman Rudnitsky

Military Applications Contract Tech. Representative

Detroit Diesel Allison U.S. Army TACOM

1557w/bjw

M915 DEMONSTRATOR CONTRACT DDAE07-85-C-R078 PERFORMANCE TEST

VEHICLE DESCRIPTION

MODEL : M915 LINEHAUL TRACTOR

VIN : OT 3814-45-10436

REGISTRATION NO. : CF 8179

ENGINE MODEL : SERIES 60C1 400 GHP @ 2100 RPM

ENGINE S/N : 6H641
TRANSMISSION MODEL : HT-755CR
TRANSMISSION S/N : 2510096622

VEHICLE TEST WEIGHT

 STEERING AXLE
 :
 5,166 Kg (11,610 LBS.)

 DRIVE TANDEM AXLES
 :
 15,804 Kg (35,040 LBS.)

 TRAILER TANDEM AXLES
 :
 15,272 Kg (33,670 LBS.)

 GROSS COMBINED WEIGHT
 :
 36,432 Kg (80,320 LBS.)

1557w/bjw

M915 ATEC/DDEC DEMONSTRATOR FINAL REPORT

APPENDIX B

tm001127, ADAMS REJECTED APPLICATION ALLISON TRANSMISSION DIV SCAAN Application Information ________ VEHICLE: MILITARY WHEELED VEHICLE-SUPPORT TACOM PROPULSION LAB. M915 ATEC/DDEC DEMONSTRATION PROG. 7011 vocation library file number 80320. 1bs. gross combination weight 35044. lbs. weight on drive wheels (43.6 percent) 19.657 in. radius, wheel- bias tires (ATD rolling resist) 513.00 wheel rev/mile 18 total tires in contact with road 4.440 driveline reduction ratio, total driveline: propeller shaft, tandem axle 90.00 % driveline efficiency (efficiency value responsibility: ADAMS) 136.41 lb.ft.sec.2 driveline equivalent inertia 0.700 traction limit coefficient 1.4000 road surface factor 13.50 \times 8.00 ft. vehicle height \times width 0.7500 air resistance coefficient DIESEL ENGINE: DDC SERIES 60 400 GHP @ 2100 RPM (E46067321) (engine data responsibility: ADAMS) (NOTE: ENGINE RATING/VOCATION COMPATIBILITY SUBJECT TO ENGINE MFGRS. REVIEW) 775.0 in3 engine displacement 997615 engine library file number 400.0 gross horsepower at 2100. rpm deductions- (hp. at 2100. rpm) 28.0 hp fan (clutch engaged) 0.0 hp fan (clutch disengaged) 2.0 hp alternator/generator 2.0 hp air compressor 2.0 hp steer pump 366.0 net horsepower 2100. rpm eng rpm 1100. 1200. 1400. 1600. 1800. 1900. 2000. 2100. 2250. entered hp 290.0 320.0 355.0 382.0 400.0 400.0 400.0 400.0 281.9 310.5 342.0 364.6 376.9 373.6 370.0 366.0 -40.7 net torque 1346. 1359. 1283. 1197. 1100. 1033. 972. 915. (max. net engine torque of 1359.1 lb ft occurs at 1188. rpm) (max. gross engine torque of 1400.5 lb ft occurs at 1198. rpm) 3.111 lb.ft.sec.2 engine inertia

THIS SCAAN INFORMATION SUBJECT TO THE DISCLAIMER SET FORTH IN TD-112

REJECTED APPLICATION

SCAAN No 212910 date: 9/ 2/88,

2:18pm edt

BEST AVAILABLE COPY

SCAAN No 212910 date: 9/ 2/88, 2:18pm edt tm001127, ADAMS REJECTED APPLICATION

ALLISON TRANSMISSION DIV .
SCAAN Application Information (cont)

VEHICLE: MILITARY WHEELED VEHICLE-SUPPORT TACOM PROFULSION LAB. M915 ATEC/DDEC DEMONSTRATION PROG. CONVERTER: TC-498 REF. TC-16611, 1-10-75

TRANSMISSION: ALLISON HT-755 CR

9544. lb.ft. max transm output torque, 1st range conv stall 24559. lb.ft. max transm output torque, rev range conv stall

TRANSM. APPLICATION- HT-755 CR EMERGENCY VEH, MOTOR HOME, SPECIALIZED VEH 12646 transm application library file number

Shift Calibration: 2100. rpm, HT(B)-755CR ATEC

upshitt	wbu	OCWISTITE	mpn
1C-2C	7.77*	2C-1C	
2 C- 2 L	15.81*	2L-5C	
ST-3L	24.34*	3L-2L	
3L-4L	30.77*	4L-3L	
4L-5L	38.91*	5L-4L	

* Indicates data altered by ADAMS

THIS SCAAN INFORMATION SUBJECT TO THE DISCLAIMER SET FORTH IN TD-112

date: 9/ 2/88, 2:18pm edt tm001127, ADAMS ALLISON TRANSMISSION DIV SCAAN Summary- REJECTED Application MILITARY WHEELED VEHICLE-SUPPORT Vehicle TACOM PROPULSION LAB. M915 ATEC/DDEC DEMONSTRATION PROG. DDC SERIES 60 400 GHP @ 2100 RPM (E46067321) (Clutch fan ENGAGED) (engine data responsibility: ADAMS) Transmission ALLISON HT-755 CR TC-498 REF. TC-16611, 1-10-75 Converter recommendation applior rating cation status --->ENGINE RATING/VOCATION COMPATIBILITY ---> SUBJECT TO ENGINE MFGRS. REVIEW CONVERTER: --->Stall turbine torque, lb.ft. 2600.max 2613. <-(XXX) Engine rpm, conv. stall (----) 1734. Converter stall torque ratio (----) 2.350 Engine peak torque rpm vs min. rpm 1188.min 1729. 0.K. Conv. SR at 2100. gov rpm 0.750/1.000 0.783 O.K. TRANSMISSION: 445.max 377. O.K. Input horsepower Input torque, 1b.ft. (lockup) 1359. O.K. 1380.max 1700./2800. 2100. D.K. Input rpm (gov.) Transm output rpm, range 5 l.u. at 2100. rpm engine gov. speed (----) 2100. VEHICLE/DRIVELINE: --->Based on STANDARD MILITARY WHEELED VEHICLE-SUPPORT ---> road surface factor of 1.000 (NOT 1.400) <----0.K. GCW lbs for 55.32 geared mph 130000.max 80320. ist conv stall, 0.K. tr.eff/wt on drive wheels ratio 0.4000 min 0.6640 D.K. 1st gear conv. stall gradeability (----) 29.56% (----) 21.23% 1st conv. 70% eff. gradeability 1st conv. 80% eff. gradeability 12.00%min 17.66% O.K. 1st conv. stall is insufficient to give 0.7 TE/weight 55.32 Geared mph @ gov rpm, range 5 l.u. (----) max mph on 0.25% grade (clutch fan DISENGAGED) at 2143. engine rpm, range 5 l.u. 55.00min 56.44 D.K. ALL TRANSMISSION APPLICATIONS require submittal to TRANSMISSION ENGINEERING DEPARTMENT Symbols indicate: --->Not within TRANSMISSION RATINGS SCAAN Summary- REJECTED Application

SCAAN No 212910

SCAAN No 212910 date: 9/ 2/88, 2:18pm edt tm001127, ADAMS REJECTED APPLICATION

ALLISON TRANSMISSION DIV
Vehicle F.T. Gradeability Summary
Clutch Fan Engaged

veh engine tr drawbar wheel mph rpm effort pull hp	grade BTU/min rang	e
		=
(cannot negotiate grade)	60.00 10	
5. 45 1801 16510 15752 239.9	20.00 4681 10	
11.60 2 093 88 00 7 992 2 72.3	10.00 2705 10	
15.57 2211 850 -2 35.4	0.00 1093 10	
(cannot negotiate grade)	60.00 20	
(cannot negotiate grade)	50.00 SC	
10.44 1808 8790 7992 244.8	10.00 4448 2 0	
28.03 2195 1030 0 77.3	0.00 935 20	
(cannot negotiate grade)	60.00 2LU	
(cannot negotiate grade)	20.00 2LU	
(cannot negotiate grade)	10.00 2LU	ı
28.8 9 219 5 10 50 0 8 0.8	0.00 791 2 LU	ı
(cannot negotiate grade)	6 0.00 3LU	
(cannot negotiate grade)	20.00 3 LU	
(cannot negotiate grade)	10.00 3LU	1
36.30 2181 1190 0 114.9	0.00 747 3 LU	j
(cannot negotiate grade)	60.00 4LU	j
(cannot negotiate grade)	20.00 4LU	J
(cannot negotiate grade)	10.00 4LL)
45.43 2161 1390 0 167.8	0.00 652 4 LU	j
(cannot negotiate grade)	60.00 5LU	J
(cannot negotiate grade)	20.00 5LL	J
(cannot negotiate grade)	10.00 5LL	J
56.02 2127 1660 0 247.5	0.00 779 5LL	J
-2.13 1804 42050 41324* 238.5	60.00 4749 R1C	
-5.00 2120 16500 15752 220.0	20.00 2847 R1C	
-5.59 2 170 8 750 7 992 13 0.4	10.00 1372 R1C	
-6.05 2221 7 50 -9 12.1	-0.01 988 R1C	

SCAAN No 212910

date: 9/ 2/88, 2:18pm edt

tm001127, ADAMS

REJECTED APPLICATION

ALLISON TRANSMISSION DIV Vehicle Full Throttle Performance Clutch Fan Engaged

veh engine tr drawbar wheel net % tran ht

mph rpm effort pull hp grade BTU/min Reverse 1, ratio= -9.648 -start, converter operation 0.00 1734 59910 59195* 0.0 109.04 15867 -2.00 1793 43382 42655* 231.4 62.67 -4.00 2030 25679 24937* 273.9 32.66 2734 -4.17 2053 24530 23788 272.8 31.01 2747 .70 TE/WT ratio -4.49 2100 22457 21711 268.8 28.08 2858 -4.61 2104 21030 20279 258.3 26.09 2879 .60 TE/WT ratio -4.97 2118 16768 16019 222.4 20.35 2919 915 -6.00 2215 1673 26.8 1.14 984 -6.04 2219 1071 313 17.2 0.39 985 Forward 1, ratio= 3.692 -drive range start, converter operation 0.00 1734 23282 22567 0.0 29.28 15867 116.4 27.22 10377 21096 2.00 1732 21824 144.6 26.11 200.8 23.10 .60 TE/WT ratio 2.58 1738 21030 20294 9060 4.00 1760 18823 18080 6459 14895 250.4 18.87 6.00 1821 15653 4180 7.77 1902 13030 12257 270.0 15.44 3120 Forward 2, ratio= 2.002 -auto upshift, converter operation 7.77 1765 10040 9267 208.1 11.62 6125 8.00 1768 9933 9158 211.9 11.48 5949 10.00 1800 8994 8200 239.8 10.26 4685 7275 258.9 12.00 1841 9.09 8089 3767 14.00 1894 7227 6390 269.8 7.98 3150 15.81 1938 6551 5694 276.1 7.11 2778 auto lockup shift 15.81 1201 6422 5564 270.7 6.94 423 6416 16.00 1216 5556 273.8 6.93 430 6.57 18.00 1368 295.1 6148 5263 501 20.00 1520 5792 4880 308.9 6.09 570 22.00 1672 5448 4508 319.6 5.62 640 5063 4093 324.0 24.00 1824 5.10 711 24.34 1849 4980 4005 323.2 4.99 722 Forward 3, ratio= 1.583 -auto upshift, auto lockup shift 24.34 1463 3711 304.2 4.63 516 4686 26.00 1562 3515 313.1 4.38 4516 28.00 1683 4299 3265 321.0 4.07 609 30.00 1803 325.2 3.73 4065 2997 662 30.77 1849 3950 2868 324.1 3.57

SCAAN No 212910 REJECTED APPLICATION

```
veh engine tr drawbar wheel net % tran ht mph rpm effort pull hp grade BTU/min
```

```
Forward 4, ratio= 1.253 -auto upshift, auto lockup shift
 30.77 1463 3739 2657 306.8 3.31
  32.00 1522
                     2557 312.4
                                   3.18
                                           417
              3661
  34.00 1617
              3528
                     2386 319.9
                                   2.97
                                           451
  36.00 1712
                                           486
              3388
                     2207 325.2
                                   2.75
  38.00 1807
              3238
                     2017 328.1
                                   2.51
                                           523
  38.91 1851
              3152
                     1912 327.0
                                   2.38
                                           541
```

Forward 5, ratio= 1.000 -auto upshift, auto lockup shift 38.91 1477 **2**958 459 1718 306.9 2.14 479 40.00 1518 2913 1650 310.7 2.05 42.00 1594 1521 1.89 515 2828 316.7 44.00 1670 2739 1387 321.4 1.73 551 46.00 1746 2647 1248 324.7 1.55 588 1098 625 48.00 1822 2546 325.8 1.37 50.00 1898 2417 920 322.3 1.15 663 701 52.00 1974 2300 752 319.0 0.94 54.00 2050 2191 590 315.6 0.73 738 55.32 2100 2123 486 313.2 0.61 763

Note: * exceeds vehicle traction limit

SCAAN No 212910 date: 9/ 2/88, 2:18pm edt tm001127, ADAMS REJECTED APPLICATION

ALLISON TRANSMISSION DIV
Vehicle Full Throttle Acceleration
Start With Brakes Locked
Clutch Fan Engaged

(on 0.00 percent grade)

speed	time sec	dist ft	accel mph/sec	eng rpm	gear range
•		=====	•	•	_
1.00	0.18	0	5.621	1729	1 C
2.00	0.36	1	5.327	1732	1C
3.00	0.55	1	4.929	1743	10
4.00	0.77	2	4.488	1760	1C
5.00	1.00	4	4.048	1786	1C
6.00	1.27	6	3.621	1821	1C
7.00	1.56	9	3.216	1864	1 C
7.77	1.82	12	2.931	1902	10- 20
8.00	1.91	13	2.416	1768	2 C
9.00	2.34	18	2.286	1783	2 C
10.00	2.79	24	2.156	1800	2 C
12.00	3.78	40	1.914	1841	2 C
14.00	4.90	62	1.677	1894	2 C
15.81	6.05	187	1.487	1938	SC- ST
16.00	6.19	90	1.398	1216	2L
18.00	7.66	127	1.330	1368	2L
20.00	9.23	171	1.232	1520	SL
22.0 0	10.92	5 23	1.139	1672	2L
24.00	12.77	28 5	1.037	1824	2 L.
24.34	13.11	297	1.010	1849	2L- 3L
26.00	14.89	363	0.909	1562	3L
28.00	17.18	454	0.845	1683	3L
30.00	19.66	5 59	0.776	1803	3L
30.77	20.68	605	0.739	1849	3L- 4L
32.00	22.49	688	0.670	1522	4L
34.00	25.59	838	0.626	1617	4L
36.00	28.9 3	1009	0.579	1712	4L
38.00	32.55	1206	0.530	1807	4L
38.91	34.32	1306	0.502	1851	4L- 5L
40.00	36.79	1449	0.436	1518	5L
42.00	41.59	1737	0.402	1594	5L
44.00	46.82	2067	0.367	1670	5L
46.00	52.59	2449	.0.331	1746	5L
48.00	59.06	2895	0.292	1822	5L
50.00	66.61	3437	0.245	1878	5L
52.00	75.74	4121	0.201	1974	5L
54.00	87.13	5007	0.158	2050	5L
56.00	110.85	6932	0.027	2126	5L
56.02	= maximu	•			5L
	(on O	.00 pe	ercent gr	ade)	

SCAAN No 212910 date: 9/ 2/88, 2:18pm edt tm001127, ADAMS REJECTED APPLICATION

> ALLISON TRANSMISSION DIV Engine-Converter Match Clutch Fan Engaged

```
speed
        .engine..
                     ....turbine.... heat rej % power
ratio
        rpm torque hp
                           rpm torque BTU/min pkg eff
0.0000
       1734
             1133
                     0.0
                             0 2613
                                      15867
                                                0.0
       1729
                                2541
                                                22.4
0.1000
             1135
                     83.6
                            173
                                       12308
0.2000
       1737
             1132
                   157.2
                            347
                                2377
                                        9205
                                                42.0
                                2159
                                                57.7
       1755
             1122
                           527
0.3000
                   216.4
                                        6731
       1786
                                                68.7 70 % eff
0.3923
             1107
                   258.6
                           701
                                1938
                                        4997
0.4000
       1790
             1105
                   261.5
                            716
                                1919
                                        4879
                                                69.5
0.5000
       1844
             1072
                   292.6
                            922
                                1667
                                        3553
                                                77.7
                                                78.4 80 % eff
0.5104
       1852
             1067
                           945
                                1639
                   295.0
                                        3441
0.5500
       1885
              1043
                    302.4
                           1037
                                 1532
                                        3060
                                                80.7
0.6000
        1921
              1020
                    309.7
                           1152
                                 1411
                                        2681
                                                83.1
                   315.0
               991
                                1294
                                                84.9
0.6500
       1967
                           1278
                                        2384
0.7000
       2010
               966
                   317.5
                           1407
                                 1185
                                        2212
                                                85.9
0.7500
       2060
               937
                   316.3
                           1545
                                 1075
                                        2179
                                                86.0
       2080
                   314.9
                           1594
               926
                                 1037
                                        5503
                                                85.8
0.7665
                    312.9
                                                85.5 gov. rpm
0.7827
       2100
               915
                           1644
                                 1000
                                        2254
0.7914
       2102
               902
                    307.7
                           1663
                                  971
                                        2259
                                                85.2
                   302.3
                                  943
                                        2273
                                                84.9
0.8000
       2104
               888
                          1683
                   271.4
                           1797
                                  793
                                        2343
                                                83.1
0.8500
       2115
               811
                   261.4
                           1822
                                  753
                                        2316
                                                82.7 coupling
0.8600
       2118
               783
                   225.0
                          1925
                                        1542
0.9000
       2139
               642
                                  614
                                                86.1
                   194.1
                          1992
                                  512
                                        1101
0.9250
       2154
               536
                                                88.2
0.9500
                    141.7
                          5098
                                         719
                                                89.3
       2177
               383
                                  360
 Lockup Operation
 eng ...turb...
                     % pwr
 speed torque hp
                    pkg eff
______
  1100
       1325
             277.5
                      98.4
  1200
        1338
              305.7
                      98.5
                      98.5 conv-lockup intersection
       1335
              313.4
  1233
  1400
       1262
             336.4
                      98.4
  1600
       1176
              358.2
                      98.2
  1800
        1079
              369.7
                      98.1
  1900
        1012
              366.0
                      98.0
         951
              362.0
                      97.8
  5000
                      97.7 gov. rpm
  2100
         894
              357.6
                      97.7
  2100
         894
              357.6
  2138
         629
              255.8
                      96.8
  2175
         372
              154.0
                      94.7
                      85.5
  2213
         124
               52.2
```

SCAAN No 212922 date: 9/ 2/88, 4:06pm edt tm001127, ADAMS REJECTED APPLICATION

> ALLISON TRANSMISSION DIV SCAAN Application Information

```
--->
      HT-754 CR
      NOT APPROVED with MILITARY WHEELED VEHICLE-SUPPORT <---
          MILITARY WHEELED VEHICLE-SUPPORT
VEHICLE:
          TACOM PROPULSION LAB. M915A1 LINEHAUL TRACTOR
    7011
          vocation library file number
   80320. 1bs. gross combination weight
   35044. Ibs. weight on drive wheels ( 43.6 percent)
   19.657 in. radius, wheel- bias tires (ATD rolling resist)
   513.00 wheel rev/mile
      18 total tires in contact with road
    4.440 driveline reduction ratio, total
          driveline: propeller shaft, tandem axle
    90.00 % driveline efficiency
 (efficiency value responsibility: ADAMS)
   136.41 lb.ft.sec.2 driveline equivalent inertia
    0.700 traction limit coefficient
   1.4000 road surface factor
    13.50 x 8.00 ft. vehicle height x width
   0.7500 air resistance coefficient
DIESEL ENGINE: CUMM NTC-400 CY80, CY81 (20163)
  (engine data responsibility: ADAMS)
  (NOTE: ENGINE RATING/VOCATION COMPATIBILITY
  SUBJECT TO ENGINE MFGRS. REVIEW)
997616
         engine library file number
   400.0 gross horsepower at 2100. rpm
  deductions- (hp. at 2100. rpm)
    28.0 hp fan (clutch engaged)
     0.0 hp fan (clutch disengaged)
    2.0 hp alternator/generator
    2.0 hp air compressor
    2.0 hp steer pump
  366.0 net horsepower
                           2100. rpm
                1300. 1400. 1500. 1600. 1700. 1800. 1900. 2100. 2460.
    eng rom
    entered hp 276.7 303.9 328.4 347.9 365.4 378.7 390.0 400.0 0.0
    net hp 265.6 290.9 313.3 330.5 345.3 355.6 363.6 366.0 -51.7 net torque 1073. 1091. 1097. 1085. 1067. 1038. 1005. 915. -110.
   net hp
 (max. net engine torque of 1097.1 lb ft occurs at 1494. rpm)
(max. gross engine torque of 1149.9 lb ft occurs at 1506. rpm)
  3.760 lb.ft.sec.2 engine inertia
```

REJECTED APPLICATION

THIS SCAAN INFORMATION SUBJECT TO THE DISCLAIMER SET FORTH IN TD-112

SCAAN No 212922 date: 9/ 2/88, tm001127, ADAMS 4:06pm edt REJECTED APPLICATION

> ALLISON TRANSMISSION DIV SCAAN Application Information (cont) -----

----> HT-754 CR ---> NOT APPROVED with MILITARY WHEELED VEHICLE-SUPPORT <---

VEHICLE: MILITARY WHEELED VEHICLE-SUPPORT TACOM PROPULSION LAB. M915A1 LINEHAUL TRACTOR CONVERTER: TC-498 REF. TC-16611, 1-10-75 TRANSMISSION: ALLISON HT-754 CR (3.69 LOW GR.)STD.

9004. lb.ft. max transm output torque, ist range conv stall 23171. lb.ft. max transm output torque, rev range conv stall TRANSM. APPLICATION- HT-754 CR

12136 transm application library file number Shift Calibration: 2100. rpm, HT-754CR (3.69 LOW)

upshift	mph	DOWNSHITE	mpn
10-20	14.98*	2C-1C	
2C-2L	23.84	2L-2C	22.00
2L-3L	26.74	3L-2L	23.97
3L-4L	3 3. 8 5	4L-3L	30.42
4L-5L	43.46	5L-4L	39.64

* Indicates non-standard data -

THIS SCAAN INFORMATION SUBJECT TO THE DISCLAIMER SET FORTH IN TD-112

date: 9/ 2/88, 4:06pm edt tm001127, ADAMS ALLISON TRANSMISSION DIV SCAAN Summary- REJECTED Application *************** MILITARY WHEELED VEHICLE-SUPPORT Vehicle TACOM PROPULSION LAB. M915A1 LINEHAUL TRACTOR CUMM NTC-400 CY80, CY81 (20163) (Clutch fan ENGAGED) (engine data responsibility: ADAMS) Transmission ALLISON HT-754 CR (3.69 LOW GR.)STD. Converter TC-498 REF. TC-16611, 1-10-75 recommendation applior rating cation status ENGINE: -->ENGINE RATING/VOCATION COMPATIBILITY ---> SUBJECT TO ENGINE MFGRS. REVIEW CONVERTER: Stall turbine torque, 1b.ft. 2600.max 2466. D.K. Engine rpm, conv. stall (----)
Converter stall torque ratio (----)
Engine peak torque rpm vs min. rpm 1494.min 1683. 2.350 1678. O.K. 0.783 <--(XX) --->Conv. SR at 2100. gov rpm 0.800/1.000 TRANSMISSION: --->Not acceptable with MILITARY WHEELED VEHICLE-SUPPORT <-(XXX)445.max 367. D.K. 1097. D.K. Input horsepower Input torque, 1b.ft. (lockup) 1380.max 2100. O.K. 1800./2100. Input rpm (gov.) Transm output rpm, range 5 1.u. (----) at 2100. rpm engine gov. speed 2100. VEHICLE/DRIVELINE: --->Based on STANDARD MILITARY WHEELED VEHICLE-SUPPORT ---> road surface factor of 1.000 (NDT 1.400) <----GCW 1bs for 55.32 geared mph 130000.max 80320. O.K. 1st conv stall, O.K. 0.6270 tr.eff/wt on drive wheels ratio 0.4000 min 1st gear conv. stall gradeability (----)
1st conv. 70% eff. gradeability (----) 27.72% 1st conv. 70% eff. gradeability (----)
1st conv. 80% eff. gradeability 12.00%min 20.16% 17.02% O.K. 1st conv. stall is insufficient to give 0.7 TE/weight Geared mph @ gov rpm, range 5 l.u. (----) 55.32 max mph on 0.25% grade (clutch fan DISENGAGED) at 2191. engine rpm, range 5 l.u. 55.00min 57.71 O.K.

SCAAN No 212922

SCAAN No 212922 date: 9/ 2/88, 4:06pm edt tm001127, ADAMS

ALLISON TRANSMISSION DIV

SCAAN Summary- REJECTED Application (cont)

Vehicle

MILITARY WHEELED VEHICLE-SUPPORT

TACOM PROPULSION LAB. M915A1 LINEHAUL TRACTOR

Engine

CUMM NTC-400 CY80, CY81 (20163)

(Clutch fan ENGAGED)

(engine data responsibility: ADAMS)

Transmission ALLISON HT-754 CR (3.69 LOW GR.)STD.

Converter

TC-498 REF. TC-16611, 1-10-75

recommendation

or rating

cation status

VEHICLE/DRIVELINE: (cont)

ALL TRANSMISSION APPLICATIONS require submittal to TRANSMISSION ENGINEERING DEFARTMENT

Symbols indicate: NOTE:

--->Not within TRANSMISSION RATINGS <-(XXX)

--->Not within PERFORMANCE REQUIREMENTS <--(XX)

SCAAN Summary- REJECTED Application

SCAAN No 212922 date: 9/ 2/88, 4:06pm edt tm001127, ADAMS REJECTED APPLICATION

ALLISON TRANSMISSION DIV
Vehicle F.T. Gradeability Summary
Clutch Fan Engaged

veh	_		drawbar			tran ht	gear
wbp		effort	pul1	hp		BTU/min	
			ate gra		60.00		1C
4.82	1741	16500			20.00		10
11.60		8800	7992	272.2	10.00	2707	10
16.61	2351	860	/ ₇₇ =	38.2	-0.01	1368	10
10.01	E301	000	-5	30.0	-0.01	1300	IL
	(cannot	negoti	ate gra	de)	60.00		20
	(cannot		ate gra		20.00		SC
9.31	1749	8780	7992		10.00	4614	20
29.64	2314	1060	0	83.8	0.00	1075	20
	(cannot		ate gra	de)	60.00		SLU
	(cannot		ate ora		20.00		SLU
	(cannot		ate gra		10.00		SLU
30.46	2315	1080		87.4	0.00	860	SLU
	(cannot	negoti	ate gra	de)	60.00		3LU
	(cannot	-	ate ora		20.00		3LU
	(cannot	negoti	ate gra	de)	10.00		3LU
37.96	2281	1220	0	123.6	0.00	800	3LU
-	(cannot	negoti	ate grad	de)	60.00		4LU
	(cannot	negoti	ate grad	de)	20.00		4LU
	(cannot	negoti	ate grad	de)	10.00		4LU
46.92	2232	1420	Ō	177.8	0.00	68 6	4LU
	cannot	negoti	ate grad	de)	60.00		5LU
((cannot	negoti	ate grad	de)	20.00		5LU
(cannot	negoti	ate grad	de)	10.00	*** ***	5LU
56.80	2156	1680	0	254.2	0.00	796	5LU
	4-0-4-			 -			
-1.88	1745	42050	41324*	211.3	60.00	4911	R1C
-5.08	2144	16500	15752	223.6	20.00	28 32	R1C
-5.84	2257	8750	7993	136.2	10.00	1414	R1C
-6.49	2376	75 0	-13	13.0	-0.02	1343	R1C

SCAAN No 212922 date: 9/ 2/80, 4:06pm edt tm001127, ADAMS REJECTED APPLICATION

ALLISON TRANSMISSION DIV
Vehicle Full Throttle Performance
Clutch Fan Engaged

veh engine tr drawbar wheel net % tran ht

mph rpm effort pull hp grade BTU/min Reverse 1, ratio= -9.648 -start, converter operation 0.00 1683 56523 55808* 0.0 96.61 14551 -2.00 1756 40944 40216* 218.4 57.84 -4.00 2028 25579 24837* 272.8 32.52 2725 -4.16 2051 24530 23788 272.3 31.01 -4.49 2100 22457 21711 268.8 28.08 -4.62 2108 21030 20279 259.2 26.09 .70 TE/WT ratio 2742 2858 .60 TE/WT ratio 2897 -5.02 2136 17063 16313 228.3 20.74 2985 -6.00 2287 5996 7.49 6754 108.1 1276 -6.49 2376 748 -13 13.0 -0.02 1343 Forward 1, ratio= 3.692 -drive range start, converter operation 0.0 27.43 14551 0.00 1683 21966 21250 21030 20301 86.0 26.12 .60 TE/WT ratio 1.53 1679 10473 2.00 1682 20513 19785 109.4 25.42 4.00 1717 17702 16960 188.8 21.60 5836 6.00 1789 14848 14091 237.6 17.82 3849 8.00 1898 12413 11637 264.8 14.64 2738 10.00 2005 10340 9545 275.7 11.97 2585 11.73 2100 9.84 2734 8678 7867 271.4 12.00 2107 8243 7428 263.8 9.29 2772 13.11 2136 6575 5748 229.8 7.17 2712 14.00 2179 5384 4547 5.67 201.0 2187 3.74 14.98 2237 3853 3005 153.9 1558 Forward 2, ratio= 2.002 -auto upshift, converter operation 14.98 1903 **6**689 5841 267.3 7.29 2837 16.00 1934 6373 5513 271.9 6.88 2683 18.00 1993 5782 4897 277.6 6.11 20.00 2049 5215 4303 278.1 5.37 2470 274.6 21.63 2100 4760 3625 4.77 2585 22.00 2105 4587 3648 269.1 4.55 2605 23.84 2129 3790 2823 240.9 3.52 2748 auto lockup shift 3849 4.80 698 23.84 1811 4817 306.2 4797 24.00 1824 3828 307.0 4.77 704 3522 26.00 1976 4523 4.39 778 313.6 26.74 2032 4398 3385 313.6 4.22 805 Forward 3, ratio= 1.583 -auto upshift, auto lockup shift 4017 3005 286.4 26.74 1607 3.74 563 2930 295.9 28.00 1683 3963 3.65 598 30.00 1803 3830 2762 306.4 3.44 653

SCAAN No 212922 REJECTED APPLICATION

```
veh engine
             tr
                 drawbar wheel net % tran ht
 mph rpm effort pull hp grade BTU/min
 32.00 1923
              3672 2568 313.3 3.20
                                         710
  33.85 2034
              3434
                    2345 314.4
                                 2.92
                                         764
Forward 4, ratio= 1.253 -auto upshift, auto lockup shift
                   2048 289.5 2.58
 33.85 1610
            3207
                                         443
 34.00 1617
                    2061 290.4
                                 2.57
                                         445
              3203
                    1964 301.9
 36.00 1712
              3145
                                2.45
                                         482
 38.00 1807
                    1835 309.6 2.28
                                         520
             3056
 40.00 1903
             2958
                    1695
                          315.5
                                 2.11
                                         561
 42.00 1998
                          317.7
              2837
                    1530
                                 1.90
                                         603
 43.46 2067
              2733
                    1393
                          316.8
                                 1.73
                                         636
Forward 5, ratio= 1.000 -auto upshift, auto lockup shift
 43.46 1650
             2527
                    1187 292.9
                                1.48
                                         541
             2517
                    1165 295.3
1072 303.1
                                 1.45
 44.00 1670
                                         551
                                1.34
 46.00 1746
             2471
                                         588
                    964 308.6
 48.00 1822
             2411
                                         625
 50.00 1898
                         313.1
                     851
                                 1.06
                                         663
             2348
 52.00 1974
             2273
                     725 315.2
                                0.90
                                         701
 54.00 2050
                     585 314.9
                                 0.73
                                         738
             2187
                     486 313.2
260 286.1
0 254.2
 55.32 2100
            2123
                                0.61
                                         763
 56.00 2126
             1916
                                 0.32
                                         778
 56.80 2156
             1678
                                 0.00
                                         796
```

Note: * exceeds vehicle traction limit

SCAAN No 212922 date: 9/ 2/88, 4:06pm edt tm001127, ADAMS REJECTED APPLICATION

ALLISON TRANSMISSION DIV
Vehicle Full Throttle Acceleration
Start With Brakes Locked
Clutch Fan Engaged

(on 0.00 percent grade)

speed	time	dist	accel	eng	gear
mpti	sec	ft	mph/sec	חפי	range
		=====	•		=====
1.00	0.19	0	5.283	1678	1C
2.00	0.38	1	4.979	1682	1C
3.00	0.59	1	4.588	1695	1 C
4.00	0.82	ā.	4.168	1717	1C
5.00	1.08	4	3.755	1748	1C
6.00	1.36	6	3.365	1789	1 C
7.00	1.68	10	3.013	1842	1 C
8.00	2.03	13	2.754	1898	10
9.00	2.41	18	2.491	1953	10
10.00	2.83	24	2.266	2005	10
12.00	3.8 3	40	1.868	2107	1 C
14.00	5.25	68	1.115	2179	1C
14.98	6.37	91	0.744	2237	10- 20
16.00	7.06	. 107	1.439	1934	2 C
18.00	8.55	144	1.280	1993	2 C
20.00	10.23	191	1.125	2049	2 C
22.00	12.16	250	0.973	2105	2 C
23.84	14.34	324	0.745	2129	2 C- 2L
24.00	14.51	330	0.958	1824	2L
26.00	16.69	410	0.885	1976	2 L
26.74	17.54	443	0.851	2032	2L- 3L
28.00	19.20	509	0.753	1683	3L
30.00	21.94	6 26	0.711	1803	3L
32.00	24.86	759	0.662	1923	3L
3 3.85	27.80	901	0.603	2034	3L- 4L
34.00	28.08	915	0.538	1617	4L
36.00	31.89	1111	0.513	1712	4L
38.00	35.94	1330	0.480	1807	4L
40.00	40.29	1579	0.444	1903	4L
42.00	45.05	1866	0.401	1778	4L
43.46	48.90	2107		2067	4L- 5L
44.00	50.64	2218		1670	5L
46.00	57.44	2667		1746	5L
48.00	64.92	3184		1822	5L
50.00	73.3 3	3788		1898	5L
52. 00	83.00	4512		1974	5L
54.00	94.65	5418		2050	5L
56.00	111.20	675 6	0.079	2126	5L
56.80	= maximu				5L
	(on (.00 p	ercent g	rade)	

SCAAN No 212922 date: 9/ 2/88, 4:06pm edt tm001127, ADAMS REJECTED APPLICATION

> ALLISON TRANSMISSION DIV Engine-Converter Match Clutch Fan Engaged

```
....turbine.... heat rej % power
 speed
         .engine..
 ratio
         rpm torque hp
                            rpm torque BTU/min pkg eff
0.0000 1683 1070
                     0.0
                            0 2466 14551
                                                 0.0
                     76.5
0.1000
        1678
              1071
                            168
                                 2394
                                       11274
                                                22.4
0.2000
        1687
             1070
                                 2244
                   144.1
                            337
                                        8456
                                                42.0
0.3000
        1708
             1065
                   199.6
                            513
                                2046
                                        6224
                                                57.6
0.3523
        1744
              1055
                  240.5
                            684
                                 1847
                                        4662
                                                68.6 70 % eff
0.4000
        1747
                    243.4
                            699
                                        4555
              1054
                                 1829
                                                69.4
0.5000
        1811
                            905
              1034
                    277.1
                                 1607
                                        3375
                                                77.7
0.5104
        1820
              1031
                    280.1
                            929
                                 1584
                                        3280
                                                78.4 80 % eff
0.5500
        1862
                    291.2
             1018
                           1024
                                 1494
                                        2954
                                                80.7
0.6000
       1905
              1003
                   302.2
                          1143
                                 1388
                                        2621
                                                83.0
0.6500
        1957
               983
                    310.8
                           1272
                                 1283
                                        2354
                                                84.8
0.7000
        2005
               962
                    315.5
                           1404
                                 1180
                                                85.9
                                        5500
        2058
                                                86.0
0.7500
               937
                    315.8
                          1544
                                 1074
                                        2176
0.7665
        2079
               926
                    314.7
                           1594
                                 1037
                                                85.8
                                        5505
0.7827
       2100
               915
                    312.9
                          1644
                                 1000
                                        2254
                                                85.5 gov. rpm
0.7914
       2104
               903
                   308.4
                                  973
                          1665
                                        2265
                                                85.2
0.8000
        2107
               891
                    303.8
                                  947
                          1686
                                        5583
                                                85.0
0.8500
       2129
              855
                   276.9
                          1809
                                  804
                                        5386
                                                83.1
0.8600
       2136
               796
                   268.1
                          1837
                                  766
                                        2370
                                                82.8 coupling
0.9000
        2178
               665
                    237.6
                          1960
                                  637
                                        1615
                                                86.2
0.9250
                   209.9
       2211
               564
                          2045
                                  539
                                        1170
                                               88.4
0.9500
               412
       2263
                   159.2 2150
                                  389
                                         777
                                                89.7
Lockup Operation
 eng ...turb...
                    % pwr
speed torque hp
                   pkg eff
1300 1052 260.4
                      98.0
                      98.1
  1400
       1070 285.3
                     98.1
  1500
       1076
             307.3
                     98.1 conv-lockup intersection
  1546 .1073
             315.8
  1600
       1064
             324.1
                      98.1
  1700
       1046
             338.5
                      98.0
 1800
       1017
             348.4
                     98.0
  1900
        984
             356.0
                      97.9
 2100
        894
             357.6
                     97.7 gov. rpm
             357.6
 2100
        894
                     97.7
 2190
        607
             253.3
                      96.7
 5580
        343
             148.7
                     94.2
 2370
         97
              43.8
                     82.2
```

UNCLASSIFIED

ı	1	C	U	IF	Ì	T	Y	,	C	L	Ā	S	5	16	•	(٩	ī	ŀ	0	ì	J	C	F	:	Ī	Ή	ľ	5	P	A	G	E	:

SECURITY CLASSIFICATION OF THIS PAGE									
REPORT DO	OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188				
1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS							
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT							
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		As It Appe	ars On The R	eport					
4. PERFORMING ORGANIZATION REPORT NUMBER	S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)				
249		13416							
6a. NAME OF PERFORMING ORGANIZATION Allison Transmission Div. General Motors	b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION U.S. Army Tank-Automotive Command ATTN: AMSTA-RGT							
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	y, State, and ZIP C	ode)					
P.O. Box 894 Indianapolis, Indiana 46206-0894		28251 Van Warren, Mi 48397-5000	ichigan						
	b. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATI	ON NUMBER				
ORGANIZATION	(If applicable) AMSTA-RGT	DAAE07-8	5-C-R078						
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBERS	<u> </u>					
28251 Van Dyke Warren, Michigan 48397-5000	*	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.				
11. TITLE (Include Security Classification) Repower and Regear of an M915 L Electronic Controls and Air Starte	ine Haul Tractor rs (Unclassified)	to Demonstra	ate Feasibility	of Co	mmercial				
12. PERSONAL AUTHOR(S)				· · · · · · · · · · · · · · · · · · ·					
Adams Bernard Eugene					2465 6011117				
13a. TYPE OF REPORT 13b. TIME COV Final FROM 85 A	ug to 89 Mar	4. DATE OF REPORT	mber	<i>Jay)</i> 15.	PAGE COUNT				
16. SUPPLEMENTARY NOTATION									
			ue on reverse if necessary and identify by block number)						
FIELD GROUP SUB-GROUP		Electronic Controls, onic Controls, Engine Air Starters,							
	High Altitude								
19. ABSTRACT (Continue on reverse if necessary an	d identify by block nu	mber)							
The M915 ATEC/DDEC Demonstrator Program consisted of the repower/regear of a U.S. Army M915 Line Haul Tractor, testing and demonstration/evaluation by the Government. The vehicle was repowered with a Detroit Diesel Series 60 engine and regeared with an Allison HT 755CR transmission. Both components included commercially-available electronic controls. Also included as part of the repower was a "Pow-R-Quik" engine air starter. The testing, demonstration, and evaluation was accomplished at several locations. Shakedown and vehicle performance testing occurred at General Motors Proving Grounds in Milford, Michigan. High Altitude Electro-Magnetic Pulse (HAEMP) testing was performed at the Government's White Sands Missile Range and is covered in a separate, classified Appendix to this report. Demonstrations for the Government took place at Milford Proving Grounds and at the Tank-Automotive Command in Warren, Michigan. End user evaluation of the demonstrator vehicle was carried out at Fort Campbell, Kentucky.									
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT WUNCLASSIFIED/UNLIMITED SAME AS RPT	DTIC USERS	21. ABSTRACT SEC Unclassifie	CURITY CLASSIFICA	TION					
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE (I	nclude Area Code)	22c. OF	FICE SYMBOL				
Ted R. Zimmerman	Previous editions are o	hsolete	SECURITY (I ASSISION	ATION OF THIS PAGE				

Unclassified